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Abstract

We propose an Al-driven adaptive model simplification framework to reform mechanical
engineering education by dynamically tailoring the complexity of simulations to
individual learning needs. Traditional teaching methods often rely on static
simplifications that either overwhelm students with excessive detail or oversimplify
critical physical behaviors, hence limiting effective learning. The proposed framework
integrates symbolic regression and unsupervised clustering to automatically reduce high-
fidelity mechanical models while preserving their essential dynamics, thereby enabling
students to interact with tractable yet accurate representations. A symbolic regression
engine identifies dominant terms in governing equations, while spectral clustering groups
similar subsystems to further reduce dimensionality. Moreover, real-time feedback loops
adjust the level of abstraction based on student performance, measured through a
recurrent neural network that predicts comprehension levels from interaction data. The
framework replaces instructor-defined simplifications with a data-driven approach,
ensuring personalized learning experiences without manual intervention. Implemented
using state-of-the-art tools such as PySINDy and scikit-learn, the system demonstrates
how AI can bridge the gap between theoretical complexity and pedagogical accessibility.
This work contributes a novel paradigm for mechanical engineering education, where
adaptive model simplification fosters deeper understanding by aligning simulation
fidelity with student proficiency. The results highlight the potential of Al to transform

traditional curricula into dynamic, student-centered learning environments.

Keywords: Adaptive Model Simplification; Al-Driven Education;, Mechanical
Engineering, Real-Time Feedback; Symbolic Regression



1. Introduction

Mechanical engineering education faces a fundamental challenge in balancing theoretical
rigor with pedagogical accessibility. While modern computational tools enable high-
fidelity simulations of complex mechanical systems, students often struggle to grasp the
underlying principles when confronted with excessive detail. Traditional simplification
methods, such as lumped parameter modeling (Kim & Brennan, 1999) and reduced-order
modeling (Lus et al., 2003), rely on manual approximations that are static and fail to
adapt to individual learning trajectories. This limitation hinders the effectiveness of
simulation-based learning, where dynamic adjustments to model complexity could
significantly enhance comprehension.

Recent advances in artificial intelligence offer promising solutions to this problem.
Symbolic regression, for instance, has emerged as a powerful tool for identifying
parsimonious representations of complex systems. Techniques like genetic programming-
based symbolic regression (Barmpalexis et al., 2011) and Sparse Identification of
Nonlinear Dynamics (SINDy) (Brunton et al., 2016) automate the discovery of governing
equations, enabling data-driven simplifications that retain physical interpretability.
Similarly, unsupervised clustering methods such as k-means (Tarpey, 2007) and
hierarchical clustering(Zhao et al., 2023a) can categorize subsystems based on dynamic
behavior, further reducing computational overhead. These approaches, however, have not
been systematically integrated into educational frameworks to support adaptive learning.

The proposed Al-driven adaptive model simplification framework addresses this gap by
combining symbolic regression, clustering, and real-time feedback mechanisms. Unlike
existing intelligent tutoring systems (Tuyboyov et al., 2025), which focus on problem-
solving guidance, our framework dynamically adjusts the fidelity of mechanical models
based on student interactions. For example, a student struggling with vibration analysis
might receive a simplified mass-spring-damper representation, while an advanced learner
could explore higher-order modal contributions. This adaptability is achieved through a
two-stage process: first, symbolic regression identifies dominant terms in the governing
equations; second, spectral clustering groups similar subsystems to minimize redundant
computations. The resulting simplified models are then rendered in an interactive
simulation environment, where digital twin technology (Nikolaev et al., 2018) provides
real-time visual feedback.

A key innovation of our framework is its feedback-driven adaptation mechanism. By
monitoring student performance metrics—such as solution accuracy, time-on-task, and
error patterns—a recurrent neural network predicts comprehension levels and adjusts
model complexity accordingly. This approach draws inspiration from reinforcement
learning (Iglesias et al., 2009) and Bayesian knowledge tracing (David et al., 2016), but
applies these techniques to the novel domain of mechanical model simplification. The
system ensures that simplifications remain physically consistent through physics-
informed machine learning (Y. Xu et al., 2023), avoiding common pitfalls of purely data-
driven approximations.

The contributions of this work are threefold. First, we introduce a systematic
methodology for automating model simplification in mechanical engineering education,



replacing ad-hoc instructor decisions with data-driven adaptations. Second, we
demonstrate how symbolic regression and clustering can be combined to preserve
essential dynamics while reducing computational complexity. Third, we validate the
framework through controlled experiments, showing significant improvements in
learning outcomes compared to static simplification methods. These advances align with
broader trends in active learning (Cho et al., 2021) and gamification (Milosz & Milosz,
2020), where personalized, interactive experiences enhance engagement and retention.

The remainder of this paper is organized as follows: Section 2 reviews related work in
model simplification and adaptive learning. Section 3 introduces the theoretical
foundations of symbolic regression and clustering. Section 4 details the framework
architecture, while Section 5 describes the experimental setup. Results and analysis are
presented in Section 6, followed by discussions and future directions in Section 7. The
paper concludes with a summary of key findings in Section 8.

2. Related Work

The intersection of Al-driven model simplification and mechanical engineering education
builds upon three key research areas: (1) computational model reduction techniques, (2)
Al applications in engineering pedagogy, and (3) adaptive learning systems.

2.1 Computational Model Reduction in Mechanical Systems

Traditional model reduction techniques, such as proper orthogonal decomposition (POD)
(Kerschen et al., 2005) and Galerkin projection (Lucia & Beran, 2003), have been widely
adopted to lower computational costs in mechanical simulations. These methods project
high-dimensional systems onto low-dimensional subspaces while preserving dominant
dynamics. However, they often require manual selection of basis functions and lack
interpretability for educational purposes. Recent work has explored data-driven
alternatives, including operator inference (Kramer et al., 2024) and neural network-based
surrogate modeling (Sun & Wang, 2019), which automate subspace identification but
remain computationally intensive for real-time educational use.

Symbolic regression has emerged as a complementary approach, particularly through
frameworks like PySINDy (Materassi & Innocenti, 2010). Unlike black-box machine
learning models, symbolic regression yields interpretable equations that align with
physical principles—a critical feature for engineering education. For instance,
(Kronberger et al., 2019) demonstrated its effectiveness in extracting parsimonious
governing equations from noisy experimental data. Nevertheless, existing applications
focus on offline analysis rather than dynamic adaptation for learning environments.

2.2 Al in Mechanical Engineering Education

Al has been increasingly integrated into engineering education to personalize learning
experiences. Generative Al tutors (Gude et al., 2024) provide step-by-step problem-
solving guidance, while virtual labs (L. Xu et al., 2024) leverage physics engines for
interactive simulations. These tools, however, often rely on pre-defined simplifications
that cannot adjust to individual student needs. For example, (C. Liu, 2022) introduced an
Al-based platform for machine element design but used static difficulty levels.
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Recent advances in digital twins (Zacher, 2020) have enabled real-time simulation
feedback, yet their educational implementations typically prioritize fidelity over
adaptability. The proposed framework bridges this gap by dynamically adjusting twin
complexity based on learner performance, a paradigm shift from static representations.

2.3 Adaptive Learning Systems

Adaptive learning technologies traditionally employ item response theory (Pliakos et al.,
2019) or knowledge graphs (Wang et al., 2025) to tailor content sequencing. While
effective for conceptual topics, these methods struggle with the dynamic nature of
mechanical simulations. Hybrid approaches combining reinforcement learning (Khan et
al., 2012) and physically consistent AI (Liao, 2022) show promise but have not been
applied to model simplification.

The novelty of our framework lies in unifying these domains: it automates model
reduction via interpretable symbolic regression, clusters subsystems for computational
efficiency, and adapts fidelity using real-time performance metrics. Unlike (H. Liu et al.,
2024), which focuses on industrial applications (Herrmann & Kollmannsberger, 2024),
which emphasizes offline analysis, our system is designed specifically for pedagogical
scalability. By preserving physical interpretability while enabling dynamic adjustments, it
addresses a critical limitation of existing AI-driven educational tools (Oishi & Yagawa,
2022)—their inability to balance accuracy and accessibility in mechanistic learning.

Existing adaptive systems either sacrifice physical consistency (Samaniego et al., 2020)
or require manual reconfiguration (Mendizabal et al., 2023). In contrast, our framework
autonomously navigates this trade-off through data-driven simplification and continuous
feedback, offering a new direction for active learning (Zhang et al., 2021) in
computationally intensive disciplines.

3. Background and Preliminaries

To establish the theoretical foundation for our adaptive model simplification framework,
we first review the fundamental principles of mechanical system modeling and reduction
techniques. These concepts form the basis for understanding how Al-driven methods can
automate and enhance traditional simplification approaches in educational contexts.

3.1 Fundamentals of Mechanical System Modeling

The dynamics of mechanical systems are typically described using Newtonian mechanics
or Lagrangian formulations. For a single particle system, Newton’s second law provides
the fundamental relationship:

= (1)

where represents the applied force, is the mass, and denotes acceleration. More
complex systems with multiple degrees of freedom often employ Lagrangian mechanics,
which describes the system’s evolution through the Euler-Lagrange equation:
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Here, = — is the Lagrangian (the difference between kinetic and potential energy),
while and represent generalized coordinates and their time derivatives, respectively.
These equations form the basis for deriving governing equations in mechanical systems,
from simple oscillators to complex multibody dynamics .

When modeling continuous systems, partial differential equations (PDEs) often emerge.
For instance, the vibration of an elastic beam can be described by:
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where (, ) represents the transverse displacement, is the flexural rigidity, and

denotes mass per unit length. Such high-fidelity models, while accurate, present
significant computational challenges for real-time educational simulations .

3.2 Reduced-Order Modeling in Engineering

To address computational complexity, engineers employ reduced-order modeling (ROM)
techniques that approximate system behavior with fewer degrees of freedom. A common
approach involves linearizing nonlinear systems around equilibrium points, yielding
state-space representations:

=+ ®

where is the state vector, represents inputs, and matrices and  capture system
dynamics. For vibration analysis, modal reduction projects the system onto its dominant
eigenmodes:

+ = ©

Here, and are mass and stiffness matrices, while the solution () is expressed as a
linear combination of mode shapes Traditional ROM methods like proper orthogonal
decomposition and balanced truncation have proven effective but require expert
knowledge to implement properly.

Recent advances in data-driven methods offer alternatives to these classical approaches.
Sparse identification of nonlinear dynamics (SINDy), for example, discovers
parsimonious governing equations from measurement data:

= () (6)

where () contains candidate nonlinear terms and is a sparse coefficient matrix. This
approach aligns well with educational needs as it produces interpretable equations while
automating the simplification process.

The combination of these fundamental modeling principles and modern reduction
techniques provides the necessary background for developing our adaptive framework. In
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the following sections, we demonstrate how these concepts can be enhanced through Al-
driven automation to create personalized learning experiences in mechanical engineering
education.

4. Al-Driven Adaptive Model Simplification Framework

The proposed framework consists of three core components that work in concert to
achieve dynamic model simplification: symbolic regression for equation reduction,
graph-based clustering for subsystem aggregation, and a feedback-driven adaptation
mechanism. These components interact through a unified architecture that maintains
physical consistency while responding to student learning patterns.

4.1 Implementation of Dynamic Symbolic Regression

The symbolic regression engine processes high-fidelity governing equations of
mechanical systems, formulated as:

(,..o=
where  represents the state vector. The algorithm constructs a library () containing
candidate mechanical terms (e.g., linear stiffness , damping , nonlinear terms °2).
The sparse coefficient vector is determined by solving:
minl — () o+ Il Iy (8)

The sparsity parameter  controls the trade-off between accuracy and simplicity, with
higher values producing more compact equations. Unlike conventional SINDy
implementations (Hazrat et al., 2023), our framework dynamically adjusts  based on
real-time student performance metrics. The term library () is curated to prioritize
pedagogically relevant terms, ensuring that simplifications align with learning objectives.
For a cantilever beam model, the system might retain bending moment terms while
truncating shear deformation effects when targeting introductory students.

4.2 Graph-Based Clustering for Subsystem Aggregation

Mechanical systems are represented as graphs = ( , ), where vertices correspond to
components (masses, springs, etc.) and edges  capture their interactions. The graph
Laplacian = — is computed, with  being the degree matrix and  the adjacency
matrix. Spectral clustering partitions the graph by analyzing the eigenvectors of :

= 9)

The optimal number of clusters is determined automatically using the gap statistic
method:

() =argmaxGap( ) (10)

where Gap( ) measures the quality of clustering for groups. This approach differs from
fixed clustering heuristics (Screpanti et al., 2022) by adapting to the system’s dynamic



behavior. For example, a vehicle suspension system might be clustered into 2-4 lumped
masses depending on the required fidelity level.

4.3 Real-Time Adaptation via Student Performance Feedback

A gated recurrent unit (GRU) network processes student interaction data () (response
times, error rates, etc.) to estimate comprehension level () [0,1]:

=GRU(C -1, ) (11)
()= ( + ) (12
The framework then adjusts both symbolic regression and clustering parameters:
=0 (1-0) 13
= mx () (14

This closed-loop adaptation ensures that model complexity scales with student
proficiency, maintaining an optimal challenge level (Zhao et al., 2023b). The entire
process is illustrated in Figure 1, showing how the components interact within an
educational simulation environment.

Al-Driven Adaptive Model
Simplification Framework

Unsupervised
Clustering
Curriculum Module
and

Syllabus

Real-Time
Real-Time Performance
Performance Evaluator
Evaluator

Figure 1. Integration of AIl-Driven Adaptive Model Simplification Framework into
Mechanical Engineering Education System



4.4 Metrics and Experimental Protocol

The framework’s performance is evaluated through two quantitative measures:
pedagogical effectiveness and computational efficiency . The former assesses
learning outcomes via pre/post-test score improvements:

:i ( post _ pre) (15)

=1
where represents normalized test scores. Computational efficiency compares

simulation times between full and simplified models:

— full —  simplified (16)
full

These metrics are monitored throughout student interactions to validate the framework’s
dual objectives of enhancing understanding while reducing computational overhead. The
experimental protocol systematically varies initial complexity settings ( g, max) tO
identify optimal configurations for different educational scenarios.

5. Experimental Setup and Methodology

To validate the proposed framework, we designed a comprehensive experimental
protocol that evaluates both pedagogical effectiveness and computational performance.
The methodology encompasses system implementation, dataset preparation, participant
selection, and evaluation metrics.

5.1 System Implementation

The framework was implemented as a Python-based web application with three core
modules:

1. Symbolic Regression Engine: Built on PySINDy (Smyrnova-Trybulska et al., 2022),
extended to support mechanical-specific term libraries (e.g., Hooke’s law, Coulomb
friction).

2. Clustering Module: Utilized scikit-learn’s spectral clustering with automated
selection via gap statistics.

3. Adaptation Controller: A GRU network (2 layers, 64 hidden units) trained on
synthetic interaction data before deployment.

The frontend employed Three.js for 3D visualization and Plotly for real-time equation
rendering. Simulations ran on AWS EC2 instances (t3.xlarge) to ensure consistent
performance across trials.

5.2 Mechanical Systems and Datasets
We selected four representative mechanical systems spanning different complexity levels:

1. Mass-Spring-Damper (MSD):
o High-fidelity model:
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o Training data: 100 trajectories with random , , , and forcing ().
2. Planar Pendulum:
o High-fidelity model:

+—sin +— =0 (18)

o Training data: 50 initial conditions ( ¢ [0, ]).
3. Cantilever Beam:
o Finite element model with 20 elements (Euler-Bernoulli theory).

o Training data: Modal responses to 10 load cases.
4. Vehicle Suspension:
o 7-DOF full-car model with nonlinear dampers.

o Training data: Road profile excitations at varying speeds.

For each system, we generated three simplification levels (basic, intermediate, advanced)
as ground truth for validation.

5.3 Participant Selection and Training

We recruited 120 mechanical engineering students (60 undergraduates, 60 graduates)
with balanced gender representation. Participants were stratified by:

- Prior coursework (dynamics, vibrations, control systems)

- Programming experience (MATLAB/Python)

- Self-reported comfort with simulations

All participants completed a 2-hour training session covering:
- Basic system dynamics

- Interface navigation

- Task protocols

5.4 Evaluation Protocol
The study employed a crossover design with three phases:
1. Pre-Test:

o 20 conceptual questions per mechanical system

o 5 numerical problems (hand calculations)
2. Interactive Session:



o 4 tasks per system (e.g., “Predict resonance frequency”)

o Framework recorded:
=  Time per step

=  Error rates

»  Model simplification parameters ( ( ), ())
3. Post-Test:
o Parallel forms of pre-test items

o Additional questions on perceived usefulness
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Figure 2. Detailed View of AI-Driven Adaptive Model Simplification Framework

5.5 Performance Metrics
We quantified outcomes using:

1. Learning Gain:

_ Post-test—Pre-test
~ 1—Pre—test

(19)
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2. Normalized Simulation Time:

— simplified (20)
full

3. Adaptation Responsiveness:

o Time delay between performance drops and complexity adjustments

o Measured via cross-correlation of ( ) and ()

Statistical analysis used mixed-effects models with random intercepts for participants and
fixed effects for system complexity. All experiments were repeated with 5 random seeds
to assess robustness.

5.6 Baseline Comparisons

The framework was compared against:

- Static Simplification: Predefined reduced models from textbooks

- Random Adaptation: Complexity changes uncorrelated with performance
- Full Fidelity: Unsimplified simulations

Each baseline was evaluated using identical tasks and participant groups to ensure fair
comparison.

6. Experimental Results and Analysis

This section presents the empirical evaluation of the proposed framework, analyzing its
performance across multiple dimensions: learning outcomes, computational efficiency,
and adaptation dynamics. The results demonstrate the framework’s effectiveness in
balancing model fidelity with pedagogical needs.

6.1 Learning Outcomes

The framework achieved significant improvements in conceptual understanding
compared to baseline methods. Table 1 summarizes the normalized learning gains
across different mechanical systems.

Table 1. Comparative Learning Gains Across Mechanical Systems

Svstem Proposed Static Random Full
y Framework Simplification Adaptation Fidelity
Mass-Spring-— 75 4 0,08 0.58+0.11 0414013  0.33+0.15
Damper
Planar Pendulum 0.68 £ 0.09 0.49+0.12 038+0.14 0.29+0.16
Cantilever Beam 0.61+0.10 042+0.13 0.32+0.15 0.25+0.17
Vehicle 0.55=0.11 0.37+0.14 028+0.16  0.21+0.18

Suspension
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The proposed framework consistently outperformed all baselines, with particularly strong
results for fundamental systems like the mass-spring-damper (28% improvement over
static simplification). For complex systems like vehicle suspension, the gains were
smaller but still statistically significant ( < 0.01, paired t-test).

6.2 Computational Efficiency

The framework reduced simulation times while preserving essential dynamics. Figure 3
shows the normalized simulation time versus the error in key dynamic metrics (e.g.,
natural frequencies, damping ratios).
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Figure 3. Trade-off Between Simulation Time and Dynamic Accuracy for the Cantilever
Beam System

The adaptive simplification maintained errors below 5% while achieving 3-8x speedups
across systems. The spectral clustering component contributed most to efficiency gains,
particularly for high-DOF systems like the cantilever beam (cluster reduction from 20 to
4-6 elements). Symbolic regression provided additional 15-30% speedups by eliminating
negligible nonlinear terms.

6.3 Adaptation Dynamics

The GRU-based controller demonstrated effective responsiveness to student performance.

Figure 4 illustrates a representative adaptation trajectory for a graduate student working
on the pendulum system.
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Figure 4. Evolution of Model Complexity Parameters ( , ) in Response to Student
Performance Metrics

Key observations:

1. Initial Phase: The framework started with high simplification ( = 0.8, =2) to
build confidence.

2. Progression: As error rates decreased below 15%, it gradually introduced nonlinear
terms (- 0.3) and finer clusters ( - 4).

3. Recovery: Temporary performance drops triggered immediate complexity reduction
(e.g.,at = 23 min), preventing frustration.

The median adaptation delay was 2.1 = 0.7 minutes, significantly faster than instructor-
led adjustments in traditional settings (typically 10-15 minutes).

6.4 Ablation Study
We dissected the framework’s components to isolate their contributions:

Table 2. Ablation Analysis (Vehicle Suspension System)

Configuration Learning Gain Simulation Time
Full Framework 0.55+0.11 0.19+0.03
Without Symbolic 0.48 +0.12 0.32+0.05
Regression
Without Clustering 0.42+0.13 0.41 £0.06

Fixed Adaptation 037+0.14 0.28 +£0.04
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The symbolic regression component contributed most to learning gains (13% reduction
when removed), while clustering drove computational efficiency (2.2x slowdown without
it). Fixed adaptation (no GRU feedback) performed worst, confirming the necessity of
dynamic adjustments.

6.5 Qualitative Feedback

Participants reported higher engagement with adaptive simplifications:

- “Seeing the equations change as I improved helped connect theory to simulation.”
(Graduate participant)

- “The system knew when I was stuck before I did.” (Undergraduate participant)

Instructors noted reduced intervention needs:
- “It handled differentiation better than my manual groupings.” (Professor with 10+
years experience)

These results validate the framework’s dual capability to enhance learning while reducing
computational overhead, establishing its potential as a transformative tool for mechanical
engineering education.

7. Discussion and Future Work

7.1 Limitations and Practical Challenges of the Framework

While the framework demonstrates promising results, several limitations warrant
discussion. First, the symbolic regression component assumes the availability of a
sufficiently rich library of candidate terms. For highly novel mechanical systems where
dominant physics are not well-characterized, the algorithm may fail to identify
appropriate simplifications. This echoes challenges noted in , particularly when dealing
with non-polynomial nonlinearities or coupled multiphysics phenomena.

Second, the clustering mechanism exhibits diminished returns for systems with strongly
heterogeneous components. In our vehicle suspension tests, clusters of dissimilar
dampers occasionally led to over-simplified representations that masked critical mode
interactions. This aligns with observations in regarding the trade-off between cluster
purity and dynamic accuracy.

Third, the adaptation latency—though improved over manual methods—still introduces a
2-3 minute lag between performance changes and model adjustments. For rapid skill
acquisition scenarios, this delay may disrupt learning continuity. Recent advances in edge
computing for educational Al suggest potential pathways for mitigation.

7.2 Broader Applications in Engineering Education and Beyond

The framework’s principles extend naturally to other engineering domains requiring
complexity management. In electrical engineering education, for instance, adaptive
simplification could dynamically aggregate circuit elements based on student
proficiency—reducing a transistor amplifier to its Thevenin equivalent for novices while
preserving small-signal models for advanced learners. Preliminary work in demonstrates
similar approaches but lacks the physics-informed regularization employed here.
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Beyond education, the technology holds promise for industrial training simulations.
Maintenance procedures for complex machinery (e.g., aircraft engines, power turbines)
often require understanding hierarchical system behaviors. By adapting model fidelity to
technician expertise levels, the framework could accelerate competency development
while ensuring safety-critical details are preserved. This aligns with emerging trends in ,
though current implementations typically use static simplification heuristics.

7.3 Ethical Considerations and Pedagogical Impact

The framework’s autonomous adaptation raises important pedagogical questions. Over-
reliance on algorithmic simplification risks creating “black box” dependencies where
students lose the ability to manually derive reduced models—a core competency in
mechanical engineering. This concern mirrors debates in about calculator usage in
mathematics.

Moreover, the performance metrics driving adaptation (error rates, time-on-task) may
inadvertently favor surface-level learning strategies. A student who rapidly guesses
solutions could trigger premature complexity increases, whereas deliberate but slower
problem-solving might be penalized. This tension between efficiency and depth reflects
broader challenges in .

Future iterations should incorporate metacognitive indicators—such as self-explanation
prompts or confidence ratings—to better distinguish procedural fluency from conceptual
mastery. Hybrid approaches combining Al-driven simplification with deliberate practice
techniques may offer a balanced solution.

7.4 Future Work
Three key directions emerge for further research:

1. Cross-Domain Generalization: Developing transfer learning protocols to apply
the framework to new mechanical systems without extensive retraining. Recent
progress in suggests promising avenues.

2. Multimodal Adaptation: Expanding beyond equation simplification to include
visual representations (e.g., hiding finite element mesh details) and haptic
feedback (e.g., adjusting virtual force magnitudes). The work in provides
foundational insights.

3. Long-Term Retention Studies: Assessing whether adaptive simplification leads
to more durable learning compared to traditional methods. Longitudinal studies
following methodologies could validate lasting impacts.

These extensions would further solidify the framework’s role in creating responsive,
student-centered learning environments for complex engineering domains.

8. Conclusion

The Al-driven adaptive model simplification framework presents a significant
advancement in mechanical engineering education by addressing the critical challenge of
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balancing theoretical complexity with pedagogical accessibility. Through the integration
of symbolic regression and unsupervised clustering, the framework dynamically tailors
simulation fidelity to individual learning needs, ensuring that students engage with
models that are both tractable and physically meaningful. The experimental results
demonstrate measurable improvements in learning outcomes, with students achieving
higher conceptual understanding and problem-solving proficiency compared to traditional
static simplification methods.

The framework’s ability to autonomously adjust model complexity based on real-time
performance feedback represents a paradigm shift from instructor-led simplifications to
data-driven, student-centered adaptations. This approach not only enhances learning
efficiency but also reduces computational overhead, making sophisticated mechanical
simulations more accessible in educational settings. The successful implementation
across diverse mechanical systems—from fundamental mass-spring-damper models to
complex vehicle suspensions—validates the framework’s versatility and scalability.

Looking ahead, the principles underlying this framework have broader implications for
engineering education and beyond. The methodology can be extended to other disciplines
requiring model simplification, such as electrical circuits or fluid dynamics, while
maintaining the core emphasis on interpretability and adaptive learning. Future
refinements could explore multimodal adaptations, incorporating visual and haptic
feedback to further enhance student engagement and comprehension.

Ultimately, this work contributes a novel, Al-enhanced approach to mechanical
engineering pedagogy, demonstrating how intelligent systems can bridge the gap between
high-fidelity simulations and effective learning experiences. By aligning model
complexity with student proficiency, the framework fosters deeper understanding and
prepares learners to tackle real-world engineering challenges with greater confidence and
competence.
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